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Assessing the Feasibility of Learning Biomedical Phenotypes via Large Scale Omics 

Profiles

Abstract 

This paper
 
applies the computational learning theory framework to elucidate the differences that 

distinguish hard bioinformatics learning tasks from easy. While most of the published predictive 

studies present the empirical error of a model used to learn a specific phenotype pattern given a group 

of subjects profiled by a recent omics measurement technology, very few explain why learning is 

feasible in some cases and infeasible in others. Our recent published results show that some tasks 

(such as predicting (sub)continental ancestral origins of individuals) are quite easy, while others (such 

as predicting the susceptibility to breast cancer) are extremely difficult. Our analysis suggests that the 

ancestral origin prediction problem is a case of realizable learning in the presence of many irrelevant 

features, which suggests that a training dataset with 
�
� �ln |H| + ln ��	

 samples would suffice for PAC 

learning this target concept. On the other hand, our analysis suggests that the breast cancer prediction 

problem appears a case of unrealizable learning from incomplete examples with relevant hidden 

features, and hidden subclasses, which suggests that at least a training dataset with max���
��� × ����

� , ����� ×
ln �

�	 , ��
�(������)�
 samples is necessary for PAC learning this target concept in the worst case. The paper 

also discusses the effect of the number of irrelevant features, relevant hidden features, and hidden 

subclasses on the sample complexity of learning biomedical phenotypes – which is very relevant to 

our task involving high-throughput omics profiles. This paper can aid future omics researchers 

interested in predictive studies to estimate the necessary and sufficient number of training examples 

required for their predictive studies. 

 

Introduction 

In addition to the widespread interest of the 

biomedical community in conducting association 

and risk assessment studies on datasets generated 

by omics profiling, many biomedical researchers 

are now performing predictive studies. However, 

most of these predictive studies focus only on 
experimentally mix-and-matching different 

algorithms for pre-processing, feature selection, 

and learning, then conclude by presenting the 

empirical error of their model using an 

evaluation strategy such as cross validation or 

hold-out dataset. The omics field would benefit 

from analytical assessments that mathematically 

explain why learning is feasible in some cases 

but infeasible in others. This paper begins to fill 

this gap by introducing the computational 

learning theory framework to the biomedical 

community and using this framework to 

elucidate the differences between two recently 

published predictive studies, predicting breast 

cancer and ancestral origins, each using the 

omics profiles generated by genotyping the 

germline SNPs of samples on Affymetrix Human 

SNP 6.0 array [1-2]. These two studies had 

similar sample and feature sizes, but the 

prediction performance of the resulting 
predictive models were very different.  As these 

studies lie at the extremes of the spectrum of 

predictability of biomedical phenotypes, 

analyzing them using the computational learning 

theory lens may help us to understand the limits 

of learnability of biomedical phenotypes. In the 

breast cancer prediction task [1], we utilized 696 

samples (348 breast cancer cases and 348 
apparently healthy controls) to learn a model that 

predicts whether a new subject will develop 

breast cancer, based on her SNP profile. Despite 

trying a wide range of biologically-aware and 

biologically-naïve (statistical) supervised 

learning approaches, we could never achieve an 

empirical error better than 0.4. In the ancestral 

origin prediction task [2], we utilized the 

international HapMap project Phase II and III 

datasets [3] to learn models that can predict an 

individual’s (sub)continental ancestral origins. 

While the breast cancer prediction had only 

marginal success, it was very easy to achieve 

empirical errors of less than 0.1 in the 

(sub)continental in predicting ancestral origins. 

For example, in the continental ancestral origin 

prediction problem, using 270 samples (1/3 in 

each continent), a single CART decision tree [5] 

with 3 internal nodes (SNPs), had an empirical 

error rate of 0.03, and an ensemble of 3 disjoint 
decision trees with 3-4 internal nodes (SNPs) 

each, achieved an empirical error rate of 0. 
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Table 1: Relevant Sample Complexity Bounds from the Computational Learning Theory Literature – H: 

hypothesis class; d: VC dimension of H; LH: optimal Bayes error rate of H; ε: estimation parameter; δ: 

confidence parameter; η: fixed labeling noise rate. 

 Sample Complexity Upper-Bound Sample Complexity Lower-Bound 

Realizable Learning �
� �ln|H| + ln �

	
 = O ��� 	�ln|H| + ln �
	
  [15] �

� !max!���
� , "#�

$� %% 	= Ω��� �d + ln �
	
  [16] 

Unrealizable Learning �
��� �ln|H| + ln �

	
 = O� �
�� 	�ln|H| + ln �

	
  [17] 
��
��� �max ����� , ln �

�	

 = Ω����� �d + ln �
	
  [18] 

Learning with a Fixed 

Labeling Noise Rate 

�
���(���()� �ln|H| + ln �

	
 =
O! �

��(���()� 	�ln|H| + ln 1
δ
% [19] 

�
�(���()� = Ω� �

�(���()�
 [21] 

Methods 

Ancestral Origin Prediction Problem  

It is well-known in the human genetics that an 

individual’s SNP profiling provides the means to 

identify his/her ancestral origins [6]. Our recent 

analysis on learning (sub)continental ancestral 

origins confirms that a small number of SNPs 

provides the information needed to identify one’s 

ancestral origins [2]. In any of these 

(sub)continental classification problems, we 

identified many equally good concepts/patterns, 

in form of disjoint small decision trees (ie, whose 

features were disjoint); as these patterns were 

accurate and diverse, we were able to increase 

the model accuracy by making an ensemble over 
these disjoint decision trees [7]. Our empirical 

study suggests learning ancestral origins from 

high-throughput SNP profiles using models as 

simple as a small decision tree is feasible. 

Therefore, it is not surprising that we could learn 

accurate predictor of ancestral origin from a 

small sample size in order of hundreds of 
samples. From the computational learning theory 

viewpoint, the ancestral origin learning problem 

is a case of realizable learning in presence of 

many irrelevant features.  

Breast Cancer Prediction Problem 

Like most cancers, breast cancer occurs because 

of an interaction among many environmental, 
lifestyle, and genetic factors. Heritable genetic 

factors include point mutations, SNPs, CNVs, 

and structural chromosome variations [8]. The 

major environmental and lifestyle risk factors 

include age, lack of childbearing or lack of 

breastfeeding, obesity, estrogen exposure (from 

endogenous and exogenous sources), radiation 
exposure, certain chemicals exposure, smoking, 

alcohol intake, and physical inactivity [9]. 

Among these many different genetic, 

environmental, and lifestyle factors, we were 

given only with SNPs in our breast cancer 

learning problem [1]. Furthermore, breast cancer 

is biologically heterogeneous disease, with a high 

degree of diversity between and within tumors as 

well as among cancer-bearing individuals and 

current molecular classifications -- based on 

clinical determinations of estrogen receptor 

status (ER), human epidermal growth factor 

receptor 2 status (HER2), or proliferation rate 

status (PR) -- suggest a minimum of four distinct 

biological subtypes for breast cancer [10]. 

However,  these distinctions are ignored in our 

dataset and all these subclasses are merged into 

the single “breast cancer” label. From the 

computational learning theory viewpoint, the 

breast cancer learning problem appears a case of 

unrealizable learning with many irrelevant 

features, relevant hidden features, and hidden 

subclasses. 

Computational Learning Theory 

Computational learning theory is a subfield of 
machine learning whose theorems explain the 

required computational and sample complexity 

of learning a pattern [11]. We consider both 

upper and lower sample complexity bounds 

within the PAC learning setting [12-14]. Sample 

complexity upper-bound for PAC learning a 

concept class C from the hypothesis class H, +,(-, ., /, 0), is the number of training 

examples that is sufficient for finding an 

hypothesis h∈H that is (ε, δ)-close to the target 

concept c∈C -- ie, for any c∈C, we can identify 

an h∈H whose error is within ε of c’s error, with 

probability at least 1-δ. Sample complexity 

lower-bound for PAC learning C from H, +1(-, ., /, 0), is the number of training 

examples that are necessary for finding an h∈H 

that is (ε, δ)-close to c∈C. Learning is feasible 

given at least +,(-, ., /, 0) training instances, 

and is infeasible given less training instances 

than +1(-, ., /, 0), in the worst case – ie, for the 
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worst possible choice of the target concept and 

the worst possible distribution of training 

examples.  

Table 1 presents some upper-bound and lower-

bound for PAC learning various learning 
problems pertinent for analyzing the 

(in)feasibility of our learning tasks, including 

results related to realizable learning, unrealizable 

learning, and learning with a fixed labeling noise 

rate: 

A hypothesis class H over the input space X for 

learning the target concept c is realizable if the 

optimal Bayes error of H equals zero and is 

unrealizable if it is greater than zero. The optimal 

Bayes error of learning the target concept c using 

the hypothesis class H equals LH = infhϵH {errorc, 

D(h) = PrXϵ D[c(x) ≠ h(x)]}.  

In learning under a fixed labeling noise rate, the 

label of each instance is flipped (ie, reversed) 

randomly with probability η < 0.5 [19]. This 

problem is proved to be a type of probabilistic 

concept learning. Probabilistic concept learning 

is a class of supervised learning problems in 

which the concept to be learned may exhibit 

uncertain or probabilistic behavior. Thus, the 
same instance may sometimes be classified as a 

positive example and sometimes as a negative 

example. An example of probabilistic concept 

learning is predicting tomorrow's weather as 

accurately as possible via measuring a small 

number of presumably relevant features, 

such as the current temperature, barometric 

pressure, and wind speed and direction. A 

possible forecast would be of the form 

"chances for rain tomorrow are 70%." The 

next day it either rains or it does not rain 

[20]. 
In learning from incomplete examples or 

learning with relevant hidden features, there is an 

underlying deterministic target concept, but some 

of the relevant variables are invisible to the 

learning algorithm, resulting in apparent 

probabilistic behavior [22]. This too is a type of 

probabilistic concept learning [20]. That is true 

for the breast cancer task, as the learner has 

access only to SNPs, but not other heritable 

factors, nor any lifestyle nor environmental 

factors. If we consider an extended training 
dataset that includes enumeration of the different 

values of the hidden features, the problem of 

learning with relevant hidden features would be 

translated into the problem of learning in the 

presence of fixed labeling noise. Thus, the 

sample complexity bounds of this class of 

learning problems considering an extended 

hypothesis class over visible and hidden features, 

would be the same as the case of learning under a 

fixed labeling noise as presented in Table 1. 

Results 

Ancestral Origin Prediction Problem 

Learning ancestral origins pattern from SNP 

profiles is easy as the sample complexity upper-

bound for PAC learning this concept suggests. 

Here, we only explain the case of continental 

population identification problem. However, the 

same sort of analysis can explain the story of the 

subcontinental population identification 

problems. The sample complexity upper-bound 

for PAC learning a target concept from the 

hypothesis class H in the realizable learning case 

is	 �� �ln|H| + ln �
	
. The size of the hypothesis class 

of 3-node decision trees from p = 611146 

features (SNPs), when there are 3 labels 

(African, European, and Asian) is ≤ -2 × 22 ×
3� × �6111463 
 ≤ 9720 × 6111462 (Here C3 = 5 is 

the number of binary decision trees with 3 nodes 

which equals the 3
rd

 Catalan number). Therefore, 

considering ε = 0.05 and δ = 0.01, the sample 

complexity upper-bound for learning this 

problem would be 
�

;.;= �ln(9720) + 3 × ln(611146) 	+ ln( �
;.;�)	
 ≈ 1075. 

This implies that even in the worst case choices 

of the target concept and distribution of the 

training instances, having 1075 instances is 

sufficient for PAC learning this hypothesis class. 

However, we found that 270 instances suffice for 

PAC learning the continental ancestral origin 

pattern. 

Breast Cancer Prediction Problem 

Learning breast cancer from SNP profiles is 

tricky as the sample complexity lower-bound for 

PAC learning this target concept suggests. The 

sample complexity lower-bound for PAC 

learning the breast cancer target concept 

combining unrealizable learning and learning 

with relevant hidden features bounds using the 

finite hypothesis class H over visible features and 

the finite hypothesis class H′ over visible and 

hidden features in the unrealizable learning case 

would be max���
��� × ����

� , ����� × ln �
�	 , ��

�(������)�
. 
Based on the below-mentioned analysis we 

demonstrate that even when we consider a very 

small hypothesis class such as conjunctions of r 

out of p features, sample complexity lower-

bound is very large. We find the sample 
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complexity lower-bound of max� ;.2
�×;.;=� ×�@;��

� , ;.2
�×;.;=� × ln( �

�×;.;�) , 2�;
;.;=×(���×;.�=)�
 ≈

max(713, 96, 30400) = 30400. Learning would 

be infeasible having a training dataset with less 

training examples than the sample complexity 

lower-bound in the worst case. 

• p = 506836 (the number of unfiltered input 

features in the breast cancer learning problem). 

• r1 = 10 (the number of terms in a conjunction 

over visible features). 

• d1 = r� × log� p = 190 (VC dimension of the 

hypothesis class of conjunctions of r1 out of p 
features) [23]. 

• LH = 0.3 (the optimal Bayes error of the 

hypothesis class of conjunctions of r1 out of p 

features).  

• h = 10 (the number of relevant hidden 

features). 

• r2 = r1
 + h = 20 (the number of terms in a 

conjunction over visible and hidden features). 

• d2 = r� × log�(p + h) = 380 (VC dimension 

of the hypothesis class of conjunctions of r2 out 

of p+h features) [23]. 

• LH’ = 0.25 (the optimal Bayes error of the 

hypothesis class of conjunctions of r2 out of p 

features).  

• ε = 0.05 (estimation parameter). 

• δ = 0.01 (confidence parameter). 

Conclusion 

Learning disease-associated phenotypes from 

omics profiles usually involves dealing with one 

or more of the following three challenges: 1) 

many irrelevant features exist in the problem 

input domain, 2) the learner does not have access 

to some very relevant features, and 3) the learner 

does not have access to the hidden subclasses in 

the class labels of the instances. It would be 

beneficial if we could estimate and then compare 

how the sample complexity upper-bounds and 

lower-bounds of learning problems vary given 

these characteristics.  

Learning with many irrelevant features means 
the training dataset offered to the learner 

encompasses many features that are irrelevant to 

the target concept. The sample complexity upper-

bound and lower-bound for learning with r 

relevant and p-r irrelevant features, given the 

Boolean functions hypothesis class, are F ��G 	�2H ×
ln 2 + I × ln J + ln �

K
  and Ω��G 	�2H + r × ln 2 × ln J +
ln �

K
  [24]. As these bounds suggest, the presence 

of many irrelevant features does not make the 

learning task substantially more difficult, at least 

in terms of the number of examples needed for 

learning, since these sample complexity bounds 

grows only logarithmically in the number of 

irrelevant features. However, depending on the 
algorithm used, the computational complexity 

might be an issue while dealing with many 

irrelevant features. 

The sample complexity bounds of learning a 

target concept in presence of relevant hidden 

features is dependent on the optimal Bayes error 

of learning the target concept via the hypothesis 

class over visible and hidden features by a factor 

of 
�

(�����L)�. If the number of hidden variables 

increases, the optimal Bayes error increases, and 

the sample complexity bounds increase 

consequently with a squared rate. Therefore, we 

can judge that hidden variables could have a 

dramatic effect on the sample complexity 

bounds. 

In many real-world learning problems, such as 

our breast cancer learning problem from SNP 

profiles, there are hidden subclasses in the labels 
provided for the learner as the disease. Existence 

of these implicit subclasses in fact increases the 

complexity of the target concept c. This 

motivates using a more complex hypothesis class 

such as m-term r-DNF formulas out of p 

variables (each of m term represent a subclass) 

instead of conjunctions over r out of p features 
used in the Results section. Considering this 

specific example, at least in cases which we 

choose the hypothesis class to be the same as 

concept class, we observe that both the sample 

complexity upper-bound and lower-bound 

increase linearly with the increase of the number 

of hidden subclasses, considering the target 

concept to be a m-term r-DNF formula. Denote 

that +, ∝ ln |.| ∝ + × I × ln(2p) and +1 ∝ N ∝ + ×
I × log�(p)	[23].  
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